[3d-flip-book id=”86″ ][/3d-flip-book]
已知数列 $\left\{a_n\right\}$ 的前 $n$ 项和 $S_n$ 满足 $2 S_n-n a_n=3 n\left(n \in \mathbb{N}^*\right)$ ,且 $a_2=5$.
(1)求数列 $\left\{a_n\right\}$ 其通项公式;
(2)设 $b_n=\dfrac{1}{a_n \sqrt{a_{n+1}}+a_{n+1} \sqrt{a_n}}, T_n$ 为数列 $\left\{b_n\right\}$ 的前 $n$ 项和,求使 $T_n>\dfrac{\sqrt{3}}{10}$ 成立的最小正整数 $n$ 的值.
(1)由题意知 $2 S_n-n a_n=3 n\left(n \in \mathbb{N}^*\right)$ ,
则 $2 S_{n+1}-(n+1) a_{n+1}=3(n+1)\left(n \in \mathbb{N}^*\right)$,
两式相减得: $2 S_{n+1}-2 S_n-(n+1) a_{n+1}+n a_n=3\left(n \in \mathbb{N}^*\right)$, 化简得: $n a_n=(n-1) a_{n+1}+3\left(n \in \mathbf{N}^*\right)$,
所以 $(n+1) a_{n+1}=n a_{n+2}+3\left(n \in \mathbf{N}^*\right)$,
两式相减得:$(n+1) a_{n+1}-n a_n=n a_{n+2}-(n-1) a_{n+1}\left(n \in \mathbb{N}^*\right)$,
化简得:$2 a_{n+1}=a_n+a_{n+2}\left(n \in \mathbf{N}^*\right)$ ,
令 $n=1$ ,得:$2 S_1-a_1=3$ ,
即 $2 a_1-a_1=3$ ,解得 $a_1=3$ ,
且 $a_2-a_1=5-3=2$ , 所以数列 $\left\{a_n\right\}$ 为 3 为首项, 2 为公差的等差数列,
所以 $a_n=a_1+(n-1) d=3+2(n-1)=2 n+1 \left( n \in \mathbb{N}^* \right)$.
(2) 又(1)知 $a_n=2 n+1\left(n \in \mathbf{N}^*\right)$ ,
所以 $b_n=\dfrac{1}{a_n \sqrt{a_{n+1}}+a_{n+1} \sqrt{a_n}}=\dfrac{1}{(2 n+1) \sqrt{2 n+3}+(2 n+3) \sqrt{2 n+1}}$
$=\dfrac{1}{\sqrt{2 n+1} \sqrt{2 n+3}(\sqrt{2 n+1}+\sqrt{2 n+3})}$
$=\dfrac{\sqrt{2 n+3}-\sqrt{2 n+1}}{\sqrt{2 n+1} \sqrt{2 n+3}(\sqrt{2 n+1}+\sqrt{2 n+3})(\sqrt{2 n+3}-\sqrt{2 n+1})} $
$=\dfrac{\sqrt{2 n+3}-\sqrt{2 n+1}}{2 \sqrt{2 n+1} \sqrt{2 n+3}} $
$=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{2 n+1}}-\dfrac{1}{\sqrt{2 n+3}}\right)\left(n \in \mathbb{N}^*\right)$
则 $T_n=b_1+b_2+\cdots+b_n$
$=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}\right)+\dfrac{1}{2}\left(\dfrac{1}{\sqrt{5}}-\dfrac{1}{\sqrt{7}}\right)+\cdots+\dfrac{1}{2}\left(\dfrac{1}{\sqrt{2 n+1}}-\dfrac{1}{\sqrt{2 n+3}}\right) $
$=\frac{1}{2}\left(\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}+\dfrac{1}{\sqrt{5}}-\dfrac{1}{\sqrt{7}}+\cdots+\dfrac{1}{\sqrt{2 n+1}}-\dfrac{1}{\sqrt{2 n+3}}\right) $
$=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{2 n+3}}\right)\left(n \in \mathbb{N}^*\right)$
令${T_n}>\dfrac{\sqrt{3}}{10}$,得$\dfrac{1}{2}\left(\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{2 n+3}}\right)>\dfrac{\sqrt{3}}{10}$ .
解得: $n>\dfrac{63}{8}$.
又 $n \in \mathbb{N}^*$ ,所以 $(n)_{\min}=8$.
所以使 $T_n>\dfrac{\sqrt{3}}{10}$ 成立的最小正整数 $n$ 的值为 8 .
暂无评论内容